\qquad

Section 9.1 Sequences

A sequence is a function whose domain is the set of positive integers. It will usually be denoted with subscript notation rather than function notation. You can use your graphing calculator in "sequence mode" to plot terms and create tables that show terms in a sequence.

An entire sequence can be denoted as $\left\{a_{n}\right\}$.
Ex. 1:
$\left\{a_{n}\right\}=\left\{1-\frac{1}{n}\right\}=\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\}$

Ex. 2:

$\left\{a_{n}\right\}=\left\{(-1)^{n} n\right\}=\{0,-1,2,-3,4, \ldots\}$
Some sequences are recursively defined.
Ex. 3:
$\left\{d_{n}\right\}$ is defined as $d_{n+1}=d_{n}-5$ and $d_{1}=25$.

For the majority of the chapter, we'll be looking at sequences that have limiting values. These sequences are said to converge.

Ex. 4:

$\left\{a_{n}\right\}=\left\{\frac{1}{2^{n}}\right\}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots\right\} \quad$ This sequence converges to 0.

Definition of the Limit of a Sequence

Let L be a real number. The limit of a sequence $\left\{a_{n}\right\}$ is L, written as

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if for each $\varepsilon>0$, there exists $M>0$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n>M$. If the limit L of a sequence exists, then the sequence converges to L. If the limit of a sequence does not exist, then the sequence diverges.

If we plot the terms of a convergent sequence, we will see a "horizontal asymptote." That is, we will see the sequence exhibit asymptotic behavior.

Ex. 5:

Given: $\left\{a_{n}\right\}=\left\{\frac{n+4}{n+1}\right\}$

Consider $\lim _{n \rightarrow \infty} a_{n}=$

THEOREM 9.1 Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$.
If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$.

In other words, if a sequnce $\left\{a_{n}\right\}$ "agrees" with a function f at every positive integer, and if $f(x) \rightarrow L$ as $x \rightarrow \infty$, then $\left\{a_{n}\right\} \rightarrow L$ as well.

Ex. 6:
Given: $\left\{a_{n}\right\}=\left\{\left(1+\frac{1}{n}\right)^{n}\right\} \quad$ Consider $\lim _{n \rightarrow \infty} a_{n}=$

THEOREM 9.2 Properties of Limits of Sequences
Let $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=K$.

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm K$
2. $\lim _{n \rightarrow \infty} c a_{n}=c L, c$ is any real number
3. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L K$
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{K}, b_{n} \neq 0$ and $K \neq 0$

New Notation: Factorial !
Try working with these on your graphing calculator.

$$
\begin{aligned}
& n!=1 \cdot 2 \cdot 3 \cdot 4 \cdots(n-1) \cdot n \\
& 0!=1 \\
& 3!=1 \cdot 2 \cdot 3=6 \\
& 5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120 \\
& 2 n!=2(n!)=2 \cdot[1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n] \\
& (2 n)!=1 \cdot 2 \cdot 3 \cdot 4 \cdots \cdot(n-1) \cdot n(n+1) \cdots \cdot(2 n-1) \cdot 2 n \\
& 4!=1 \cdot 2 \cdot 3 \cdot 4=24 \\
& 6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720 \\
& 2!=1 \cdot 2=2 \\
& 1!=1=1
\end{aligned}
$$

THEOREM 9.3 Squeeze Theorem for Sequences

If

$$
\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}
$$

and there exists an integer N such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>N$, then

$$
\lim _{n \rightarrow \infty} c_{n}=L .
$$

Ex. 7:
Given: $\left\{a_{n}\right\}=\left\{\frac{\sin (n)}{n}\right\} \quad$ Consider $\lim _{n \rightarrow \infty} a_{n}=$

THEOREM 9.4 Absolute Value Theorem

For the sequence $\left\{a_{n}\right\}$, if

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \quad \text { then } \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

Ex. 8:
Given: $\left\{a_{n}\right\}=\left\{\frac{5 n}{\sqrt{n^{2}+4}}\right\}$
Consider $\lim _{n \rightarrow \infty} a_{n}=$

Ex. 9:

Given: $\left\{a_{n}\right\}=\left\{\frac{(n-2)!}{n!}\right\}$ Consider $\lim _{n \rightarrow \infty} a_{n}=$

Ex. 10:
Given: $\left\{a_{n}\right\}=\left\{\frac{n^{2}}{2 n+1}-\frac{n^{2}}{2 n-1}\right\}$
Consider $\lim _{n \rightarrow \infty} a_{n}=$

Ex. 11:
Given: $\left\{a_{n}\right\}=\{\cos (\pi n)\} \quad$ Consider $\lim _{n \rightarrow \infty} a_{n}=$

Ex. 12:
Given: $\left\{a_{n}\right\}=\left\{\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1)}{n!}\right\} \quad$ Consider $\lim _{n \rightarrow \infty} a_{n}=$

Definition of a Monotonic Sequence

A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are nondecreasing

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots
$$

or if its terms are nonincreasing

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots
$$

Definition of a Bounded Sequence

1. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a real number M such that $a_{n} \leq M$ for all n. The number M is called an upper bound of the sequence.
2. A sequence $\left\{a_{n}\right\}$ is bounded below if there is a real number N such that $N \leq a_{n}$ for all n. The number N is called a lower bound of the sequence.
3. A sequence $\left\{a_{n}\right\}$ is bounded if it is bounded above and bounded below.

THEOREM 9.5 Bounded Monotonic Sequences

If a sequence $\left\{a_{n}\right\}$ is bounded and monotonic, then it converges.

Ex. 13:
Given: $\left\{a_{n}\right\}=\left\{n e^{-\frac{n}{2}}\right\} \quad$ Consider $\lim _{n \rightarrow \infty} a_{n}=$

From the graph of $y=x e^{\frac{-x}{2}}$, for $x \geq 0$, we can see that the function is bounded above by $y=1$ and bounded below by $y=0$. Therefore, by Theorem $9.5,\left\{n e^{-\frac{n}{2}}\right\}$ is a convergent sequence, since $\left\{n e^{-\frac{n}{2}}\right\}$ is bounded and monotonic for $n \geq 2$.

Ex. 14: The Fibonacci Sequence
Consider the sequence is defined by $a_{n+2}=a_{n+1}+a_{n}$ with $a_{1}=1$ and $a_{2}=1$.

$$
\left\{a_{n}\right\}=\{1,1,2,3,5,8,13,21,34,55, \ldots . .\}
$$

This is the Fibonacci Sequence.

